Advances in Mathematics: Scientific Journal 9 (2020), no 12, 10591-10612 ISSN: 1857.8365 (printed); 1857.8438 (electronic) https://doi.org/10.37418/amsj 9.12 .45

DISTANCE AND DISTANCE LAPLACIAN SPECTRUM OF THE ZERO-DIVISOR GRAPH ON THE RING OF INTEGERS MODULO n

P. M. MAGI ${ }^{1}$, SR. MAGIE JOSE, AND A. KISHORE

ABSTRACT. For a commutative ring R with non-zero identity, let $Z^{*}(R)$ denote the set of non-zero zero-divisors of R. The zero-divisor graph of R, denoted by $\Gamma(R)$, is a simple undirected graph with all non-zero zero-divisors as vertices and two distinct vertices $x, y \in Z^{*}(R)$ are adjacent if and only if $x y=0$. In this paper, we describe the computation of distance, distance Laplacian spectrum of $\Gamma\left(\mathbb{Z}_{n}\right)$ by exploring its combinatorial structure as the joined union of its induced subgraphs.

1. Introduction

In this paper G denotes a simple, finite, undirected and connected graph with vertex set $V(G)$ and edge set $E(G)$. The order of a graph G is the cardinality of $V(G)$. If u and v are distinct vertices in a graph $G, d_{\mathcal{G}}(u, v)$ denotes the distance between u and v; which is the length of a shortest path between u and u. Clearly $d_{G}(u, u)=0$ and $d_{G}(u, v)=\infty$ if there is no path between u and u If $u \in V^{\prime}(u)$, the open neighborhood of u; denoted by $N_{G}(u)$ is the set of vertices adjacent to u in G. The cardinality of $N_{G}(u)$ is the degree of u. In a connected graph G, the transmission degree of a vertex v is defined as $\operatorname{Tr}(v)=\sum_{u \in V}\left(d_{G}(u, v)\right.$. The adjacency matrix, $A(G)$ of a graph G of order n is a $0 \quad 1$ matrix of order $n \times n$ with entries $a_{i j}$ such that $a_{i j}$ is 1 , if the i th and j th vertices are adjacent, and 0 otherwise.

${ }^{1}$ corresponding author

2020 Mathematics Subject Classification. 05C50, 15A18.
Key words and phrases. distance matrix, distance Laplacian matrix, zero-divisor graph, block matrix.

